DGAO Annual Meeting June 2009, Brescia, Italy

Fast and Accurate Free Space Propagation Based on Automatic Operator Selection

Michael Kuhn, LightTrans GmbH, Jena, Germany. Frank Wyrowski, Friedrich Schiller University, Jena, Germany. Hagen Schimmel, LightTrans GmbH, Jena, Germany.

Outline

- 1. The goal of automatic operator selection
- 2. The algorithm of automatic operator selection
- 3. The integration in the software VirtualLab™
- 4. Conclusions and Outlook

The Propagation Task

The Propagation Task

$$f(x,y,z_{j+1}) = \mathcal{P}_{\Delta z} f(x,y,z_j)$$

$$\begin{bmatrix} E_x(x, y, z_{j+1}) \\ E_y(x, y, z_{j+1}) \end{bmatrix} = \begin{bmatrix} \mathcal{P}_{\Delta z} & 0 \\ 0 & \mathcal{P}_{\Delta z} \end{bmatrix} \begin{bmatrix} E_x(x, y, z_j) \\ E_y(x, y, z_j) \end{bmatrix}$$

The Propagation Task

- Several operators are available to choose from
 - Spectrum of plane waves operator (SPW)
 - Rigorous (no physical error)
 - Numerical effort may grow beyond feasible limits
 - Fresnel operator
 - Paraxial approximation (small physical error for paraxial fields)
 - Far field operator
 - Far field approximation (far field to far field, far field to waist, waist to far field)
 - Geometrical optics operator
 - Geometrical optics approximation

The Goal

- Select an operator with minimal error and minimal numerical effort
- Solution is not trivial: SPW has error "o.o" but exceeds memory limits for large propagation distances

Example 1

- Super Gaussian
- 50 μm radius (paraxial)
- 1 µm propagation distance

Operator	Deviation (vs. SPW)	Effort (pixel size)
SPW	0	51 x 51
Fresnel	4.7e-6	624 x 624
Far Field	2.0	625 x 625
Geometrical Optics	0.0021	51 X 51

Example 2

- Super Gaussian
- 50 µm radius (paraxial)
- 10 mm propagation distance

Operator	Deviation (vs. SPW)	Effort (pixel size)
SPW	О	214 X 214
Fresnel	5.0e-6	47 × 47
Far Field	0.49	47 × 47
Geometrical Optics	0.48	51 x 51

Example 3

- Super Gaussian
- 5 µm radius (non-paraxial)
- 10 mm propagation distance

Operator	Deviation vs. SPW	Effort (pixel size)	
SPW	0	23241 X 23241	
Fresnel	0.11	51 x 51	
Far Field	5.5e-5	51 x 51	
Geometrical Optics	2.0	51 x 51	

The Goal

- Provide an automatic selection algorithm
- Select the operator that has
 - 1. Deviation (vs. reference) below some threshold
 - 2. Minimal numerical effort (CPU time, required memory)

The Algorithm: Required Components

- Required Components
 - 1. Estimate of deviation for the various operators
 - requires a reference
 - has to be much faster than the propagation of the 2d field
 - 2. Estimate of effort for the various operators
 - 3. **Decision tree** to select the operator using estimates for the deviation and the numerical effort

Estimates based on 1d Cuts of 2d Fields

- Estimates for deviation and effort are based on 1d cuts of 2d fields – this ensures that estimates can be computed fast
- Selection of 1d cuts are based on energy arguments: take those cuts with largest energy

Estimates based on 1d Cuts of 2d Fields

Estimates based on 1d Cuts of 2d Fields

Estimate for the Deviation

- Assumptions:
 - SPW propagation is feasible for 1d fields
 - Setup of the operators such that the numerical error is negligible
- Reference field (1d) is obtained by SPW propagation
- Deviation estimate is obtained by maximum over all 1d cuts of the relative deviation d:

$$d := \frac{\|f_{operator}(x, y) - f_{reference}(x, y)\|_2}{\|f_{reference}(x, y)\|_2}$$

2d (exact) vs. 1d Deviation Estimate

• Comparison of deviation computed for 2d and for 1d fields (super Gaussian, radius = $5 \mu m$)

	2d deviation			1d deviation		
Distance	Fresnel	Far Field	Geom. Optics	Fresnel	Far Field	Geom. Optics
100 µm	0.0014	0.48	0.49	0.00092	0.15	0.19
ı mm	0.02	0.0053	1.90	0.011	0.0017	1.1
2 mm	0.034	0.0013	2.0	0.019	0.0004	1.4
5 mm	0.071	0.00021	2.0	0.03	7.0e-5	1.6
10 mm	0.11	5.46e-5	2.0	0.05	1.9e-5	1.7

• SPW (10 mm) requires 23241 x 23241 = 540 MegaPixels. This field needs 8 GB memory. VirtualLab™ Advanced computing time < 200 seconds using 8 kernels.

Estimate for the Numerical Effort

• The effort estimate is obtained by the product of the maximum effort for the 1d cuts in x- and y-direction, respectively:

$$N_{2d} := N_{x,1d} \cdot N_{y,1d}$$

Operator Selection: Decision Tree

Working with VirtualLab™ 4: An Example

• Can you guess the (almost) unique choice of the required propagation operators? VirtualLab™ can!

Working with VirtualLab™ 4: An Example

Working with VirtualLab™ 4: An Example

 Can you guess the (almost) unique choice of the required propagation operators? VirtualLab™ can!

Conclusions and Outlook

- Free space propagation is not trivial task
- Unified optical modeling allows to combine/select from a zoo of operators
- Automatic selection is required to support comfortable and robust simulation
- Operators cover many but not yet all cases
- Ongoing research (see also posters) on operators, estimators for deviation and error, ...
- Follow the progress at www.lighttrans.com